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Abstract. We present a stochastic algorithm to solve numerically the problem of finding the
global minimizers of a real valued function subject to lower and upper bounds. This algorithm
looks for the global minimizers following the paths of a suitable system of stochastic differential
equations. Numerical experience on several test problems known in literature is shown.
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1. Introduction
n T nLet R be the n-dimensional real Euclidean space, x 5 (x , x , . . . , x ) [ R and_ 1 2 n

let k , k be non-negative integers such that k < k < n, we define the following1 2 1 2

region

m < x i [ Ii i 1
n x < M i [ IL 5 x [ R (1.1)_ i i 25 * 6m < x < M i [ Ii i i 3

where I 5 h1, . . . , k j, I 5 hk 1 1, . . . , k j, I 5 hk 1 1, . . . , nj and m , i [ I , I ,1 1 2 1 2 3 2 i 1 3
0

M , i [ I , I , are given real constants with m , M , i [ I . Let L be the interior ofi 2 3 i i 3

L, we consider the problem

min f( x ) (1.2)_
x [L_

0
n 2where f : R → R is a real valued function, f [ C (L).

Let D( x ) be the diagonal matrix D( x ) 5 diag(d ( x ), d ( x ), . . . , d ( x )) where_ _ _ _ _1 2 n

x 2 m i [ Ii i 1

M 2 x i [ Ii i 2d ( x ) 5 (1.3)_i (x 2 m )(M 2 x )i i i i5]]]]]] i [ I3M 2 mi i

2 2 2 2and let D ( x ) 5 diag(d ( x ), d ( x ), . . . , d ( x ))._ _ _ _1 2 n
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We assume that there exists a finite solution of the problem (1.2) and we solve
this problem following the paths of the stochastic differential equation given by

2d x (t) 5 2D ( x )= f( x ) dt 1 «(t)D( x ) dW(t) (1.4)_ _ _ _ _x_

0

x (0) [ L (1.5)_

where = f( x ) is the gradient of f with respect to x , W(t) is an n-dimensional_ _ _x_

standard Wiener process and «(t) is a given positive function of t such that

lim «(t) 5 0 . (1.6)
t→1`

We note that a method which follows a trajectory of (1.4) when «(t) 5 0, t . 0, is
local, while the stochastic term introduced in (1.4) when «(t) . 0, t . 0, permits the
trajectories to escape from the ‘attracting set’ of the local minimizers of f on L.

The stochastic differential equation (1.4) is inspired to the following stochastic
differential equation

d x (t) 5 2= f( x ) dt 1 «(t) dW(t) (1.7)_ _ _x_

nx (0) 5 x [ R . (1.8)_ _0

When «(t) 5 « ;t . 0, Equation (1.7) is known as the Smoluchowski–Kramer0

equation [1, Chap. 8]. Let p (0, x , t, x ) be the transition probability density of the_ _« 00

solution process x (t) of (1.7), (1.8) with «(t) 5 « , it is known [2, 3, 4] that when f_ 0
` `is smooth enough p (0, x , t, x ) → p ( x ) in law as t → 1`, where p ( x ) is the_ _ _ _« 0 « «0 0 0

stationary solution of the following Fokker Planck equation
22np  p«f«  «0 0 0 n]] ] ] ]]]5 O p 1 x [ R (1.9)_S DF G« 20t x x 2 xi ii51 i

with

lim p (0, x , t, x ) 5 d( x 2 x ) , (1.10)_ _ _ _« 0 00t→0

which satisfies

E d x p ( x ) 5 1 . (1.11)_ _«0nR

2It is easy to see that if e d x exp(22f( x ) /« ) , 1` thenn _ _R 0

2f( x )_` ]]p ( x ) 5 N exp 2 (1.12)_« « S 2 D0 0 «0

2 21where N 5 [e d x exp(22f( x ) /« )] .n _ _« R 00

The limit density (1.12) is independent of x and when f has only a finite number_0

of isolated global minimizers this limit density is peaked around the global
minimizers of f and the peaks are narrower when « is smaller. On this property of0

the limit density (1.12) is based the method proposed in [1, 2] in the case of
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unconstrained optimization. Such method looks for the global minimizers of f
following the paths of (1.7) with asymptotic condition (1.6). Mathematical
foundation of it is given in [3] and a survey on stochastic techniques for global
optimization is given in [9].

Let us go back to our problem (1.2). In this paper, first of all, we prove that the
solution process of (1.4) belongs to the feasible region L if the initial point is an
interior point of L (see Lemma 2.1). Then, we investigate if such process has
theoretical properties analogous to those of the solution process of (1.7). We make
this analysis looking for the limit density of the process (1.4), (1.5) with «(t) 5 «0

(see Theorem 2.3) and we show that the behavior as « → 0 of such limit density is0

analogous to that of the limit density (1.12) for an unconstrained optimization
problem. So we propose a method which attempts to approach a solution of the
problem (1.2) following a trajectory of (1.4), (1.5) with a suitable function « which
satisfies condition (1.6). In practice, let ht j and h« j j 5 0, 1, 2, . . . be sequences ofj j

real numbers such that

0 < t , t ; j 5 0, 1, . . . , lim t 5 1`j j11 j
j→1`

(1.13)
« > « ; j 5 0, 1, . . . , lim « 5 0j j11 j

j→1`

we choose the following piecewise constant function

«(t) 5 « t < t , t ; j 5 0, 1, . . . , (1.14)j j j11

and we look for a solution of the problem (1.2) by observing the asymptotic value as
t → 1` of a numerically computed sample trajectory of (1.4) with the function «
given by (1.14) and initial condition (1.5). The motivation of the method is the
following: if the function « is fixed at each value « for a period (t , t ) largej j j11

enough we can expect that the transition density p (t , x , t, x ), where x 5 x (t ),_ _ _ _« j j j jj
`approaches the limit density p ( x ) which is independent of x and which is more_ _« jj

concentrated around the global minimizers of f when « decreases.j

In Section 2 we present the method and some properties of the solution process of
(1.4), (1.5). In Section 3 we show a numerical integration of (1.4) and we give a
brief description of the algorithm. In Section 4 we propose a modification of the
algorithm suggested by the theoretical result shown in Section 2. Finally, in Section
5 we present some numerical results obtained applying the original algorithm, the
modified one and the simulated annealing on test problems known in literature.

2. The stochastic differential equation and the constrained global
optimization

Let us consider the stochastic differential equations

2d x (t) 5 2D ( x )= f( x ) dt 1 «(t)D( x ) dW(t) (2.1)_ _ _ _ _x_
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0

x (0) [ L , (2.2)_

where D( x ) is the matrix introduced in Section 1, f is the objective function of the_
problem (1.2), W(t) is an n-dimensional standard Wiener process and_

«(t) 5 « t < t < t ; j 5 0, 1, . . . , (2.3)j j j11

where ht j and h« j j 5 0, 1, 2, . . . are sequences of real numbers such thatj j

0 < t , t « > « ; j 5 0, 1, . . . , lim t 5 1` lim « 5 0 .j j11 j j11 j j
j→1` j→1`

(2.4)
0

2LEMMA 2.1. Let f [ C (L) and let x (t) be a solution process of (2.1), (2.2) and_
x * [ L, if ;i such that d ( x *) 5 0 we have_ _i

f
]x* 5 m ⇒ lim ( x ) , 1` (2.5)_i i xx → x *_ _ i

f
]x* 5 M ⇒ lim ( x ) . 2` (2.6)_i i xx → x *_ _ i

then x (t) [ L for any value of t._
Proof. If x * [ L with x* 5 m then d ( x *) 5 0 and because of (2.5) we have_ _i i i

f2 ]lim 2 d ( x ) > 0 (2.7)_i xx → x *_ _ i

Analogously, if x * [ L with x* 5 M then we have d ( x *) 5 0 and because of_ _i i i

(2.6) we have

f2 ]lim 2 d ( x ) < 0 (2.8)_i xx → x *_ _ i

This means that the trajectory x (t) cannot cross the boundary of L. h_

When «(t) 5 0, ;t . 0 the stochastic differential equation (2.1) reduces to the
following ordinary differential equation

2d x (t) 5 2D ( x )= f( x ) dt . (2.9)_ _ _x_

LEMMA 2.2. The trajectories solution of the ordinary differential equation (2.9)
follow the steepest descent direction with respect to the Riemannian metric G( x ) 5_

0
22D( x ) defined for x [ L._ _

nProof. The steepest descent direction v [ R of a function f defined on an open_
2 n ndx dxi i]]set with respect to the Riemannian metric d x 5 o at x [ R is the_ _i51 2d ( x )_iTdirection that minimizes the linear functional = f( x ) v , that is_ _x_

Tmin = f( x ) v (2.10)_ _x_nv [R_
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on the ellipsoid

T 22 2v D ( x )v 5 r . (2.11)_ _ _

The Lagrange conditions for this problem are:

22
= f( x ) 5 2mD ( x )v_ _ _x_ (2.12)H T 22 2v D ( x )v 5 r_ _ _

so we find

1 2]v 5 D ( x )= f( x ) . (2.13)_ _ _x_2m

nIt is easy to see that the vector w [ R , independent of r, given by_
2w 5 2D ( x )= f(x) (2.14)_ _ x_

points in the minimizing direction for the linear functional considered. h

Since a method for solving problem (1.2) based on the ordinary differential
equation (2.9) is local (it depends on the behavior of f along the trajectory), we
propose a method that attempts to get a solution of problem (1.2) looking at the
asymptotic value of a sample trajectory obtained by the numerical integration of
(2.1), (2.2).

Let x (t) be a solution process of (2.1) for t . t with condition_ j

x (t ) 5 x , (2.15)_ _j j

nfor any Borel set A # R , we define

P (t , x , t, A) 5 Ph x (t) [ Aj (2.16)_ _« j jj

where Ph ? j is the probability of h ? j and P (t , x , t, x ) is the transition probability_ _« j jj

of x (t). In the following we assume that ; j 5 0, 1, 2, . . . there exists a transition_
probability density p (t , x , t, x ) such that_ _« j jj

P (t , x , t, A) 5E d x p (t , x , t, x ) (2.17)_ _ _ _« j j « j jj jA

which is a solution of the following Fokker Planck equation
2n 2p 0«« f j j2 2]] ] ] ]]5 O d ( x )p 1 (d ( x )p ) x [ L (2.18)_ _ _S DF Gi « 2 i «j jt x x 2 xi ii51 i

with

lim p (t , x , t, x ) 5 d( x 2 x ) . (2.19)_ _ _ _« j j jjt→t j

Moreover we assume that the transition probability density p (t , x , t, x ) ap-_ _« j jj
`proaches as t → 1` a function p ( x ) which is the probability density of a random_«j
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`variable x such that x (t) → x as t → 1` in law, and we assume that p ( x ) is the_ _ _ _` ` «j

unique stationary solution of (2.18) with e d x p ( x ) 5 1. With such assumption,_ _L «j
`we are able to find such stationary probability density p ( x ), so we can study the_«j

`behavior of p ( x ) as « → 0 in order to give a heuristic motivation to the method we_« jj

propose.

THEOREM 2.3. Let us consider the Cauchy problems (2.1), (2.2) with «(t) 5 « ,j0
2

;t . t and let f [ C (L) be the objective function of the problem (1.2) satisfyingj

exp(2af( x ))_
]]]]E d x , 1`;a . 0 , (2.20)_n 2

L p d ( x )_i51 i

`where d ( x ), i 5 1, . . . , n are given in (1.3). If there exists a limit density p ( x ) of_ _i «j
`(2.1), (2.2) and if p ( x ) is the unique stationary solution of the Fokker Planck_«j

equation, that is

` 2n 2p 0«« f j j` 2 2 `]] ] ] ]]5 O p d ( x ) 1 (d ( x )p ) 5 0 x [ L (2.21)_ _ _S DF G« i 2 i «j jt x x 2 xi ii51 i

with the condition

`E d x p ( x ) 5 1 , (2.22)_ _«j
L

`then p is given by«j

n 21 0f( x )_` 2 ]]p ( x ) 5 N P d ( x ) exp 22 x [ L , (2.23)S D_ _ _« « i 2S Dj j i51 «j

where N is the normalization constant.«j

Proof. First, we observe that (2.20) implies that f satisfies the assumptions of
Lemma 2.1, so that x (t) [ L for any value of t. Then, the thesis follows by_
substituting formula (2.23) into (2.21). h

REMARK 2.4. Using the change of variables

log(x 2 m ) i [ Ii i 1

2log(M 2 x ) i [ Iy 5 (2.24)i i 2i 5
log(x 2 m ) 2 log(M 2 x ) i [ Ii i i i 3

and Ito’s Lemma, Equations (2.1), (2.2) with «(t) 5 « , ;t . t , as in Theorem 2.3j j

become

˜d y (t) 5 2= f( y ) dt 1 «(t) dW(t) (2.25)_y_ __

ny (0) 5 y ( x (0)) [ R (2.26)__ _

where
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2 n«(t)˜ ]]f( y ) 5 f( x ( y )) 1 O log d ( x ( y )) . (2.27)_ _i_ _ _2 i51

Equation (2.25) is the stochastic differential equation (1.7) for an unconstrained
˜ ˜optimization problem with the objective function f( y ). Writing the function f( y ) in_ _

the following way

22
]]exp f( x ( y ))_2 2S D_«(t) «(t)˜ ]] ]]]]]]f( y ) 5 2 log (2.28)1 n 2_ 2 p d ( x ( y ))_i51 i _

we can show that under the assumptions of Theorem 2.3, the limit density of (2.25),
˜(2.26) as « → 0 is peaked up on the global minimizers of f( y ) and such minimizersj _

as « → 0 approach with the global minimizers of f( x ( y )). This means that the_j _
behavior of the limit density (2.23) as « → 0 is analogous to the behavior as thej

limit density for an unconstrained optimization problem. So that it is plausible to
look for the global minimizer of f on L choosing the function «(t) as in (2.3) and
integrating Equation (2.1) with (2.2) in order to observe the asymptotic value of the
trajectory solution of (2.1), (2.2). This means that we integrate Equation (1.4) with
«(t) 5 « for large time interval [t , t ) to permit the system to ‘reach thej j j11

equilibrium’ and then we take «(t) 5 « , « ;t [ [t , t ). Indeed this is only aj11 j j11 j12

heuristic justification to our method, a rigorous foundation deserves further
investigation.

3. Description of the algorithm

In this section we propose an interior point algorithm for solving problem (1.2). The
ideas on which this algorithm is based on are analogous to those presented in [1, 2].
In fact the algorithm approximates a solution of problem (1.2) looking at the
asymptotic value as t → 1` of a numerically computed sample trajectory of (2.1),
(2.2) with the function (2.3), so that the basic step of this algorithm is the numerical
discretization of (2.1). We discretize the Cauchy problem (2.1) using the Eulero–
Cauchy method.

k21Let h . 0 the step-length of the kth iteration, t 5 o h , t 5 0, k 5 0, 1, . . .k k i50 i 0

and let u be a random vector sampled from an n-dimensional standard Gaussian_k
k11distribution, then the numerical approximation x of x (t ) is obtained by the_ _ k11

following finite difference scheme:

]k11 k 2 k k kx 2 x 5 2h D ( x )= f( x ) 1 « h D( x )u (3.1)_ _ _ _ _ _k x jÏ k k_

0
0x [ L , j 5 0, 1, 2 . . . k 5 0, 1, 2, . . . (3.2)_
]

where h u 5 W(t ) 2 W(t ), as a consequence of the properties of the Wiener_ _ _Ï k k k11 k

process.
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kThe algorithm follows simultaneously a given number of trajectories h x j k 5_
0, 1, 2, . . . , for a period of observation whose duration is a given number of time
integration steps. During this period of observation the index j is constant, so that «j

is a parameter, while the step-length h is adjusted by the algorithm in such ak0
k11manner that x [ L, ;k 5 0, 1, 2, . . . ._

At the end of every period the trajectories are compared and they are ordered
according with the value that the objective function assumes on them. Then a
trajectory is discarded and replaced with a new trajectory starting from the best
point reached until the current iteration. Successively the value of « is decreasedj

according with a reduction coefficient r (i.e. « 5 r « ) and a new period of« j11 « j

observation is computed.
We note that the perturbation coefficient « must go to zero very slowly in orderj

to permit the trajectories to escape from the ‘attracting set’ of the local minimizers.
This means that a large number of steps is required anyway and for this reason we
choose the Euler–Cauchy method for cheap basic time steps.

If « < « , where « is a given positive constant, all the trajectories are stoppedj min min

and just a new trajectory is computed starting from the best point reached and using
(3.1) with « 5 0. Finally the algorithm stops when this new trajectory satisfies thej

following criterion

k11 ku f( x ) 2 f( x )u , fappr (3.3)_ _

where fappr is a fixed positive constant.

4. A modification of the algorithm

In Section 2 we gave a heuristic justification to our method based of the behavior of
the limit density (2.23) of Theorem 2.3 as « → 0. Let we observe that in Theoremj

2.3 the assumption (2.20) implies that f → 1` ; x [ L, in fact only in this case_
the limit density (2.23) is normalizable. In Section 5 we show that the algorithm
works also when the test problems considered do not satisfy (2.20). However, in this
section, we propose a modification of the method presented in Sections 2 and 3 that
does not require the assumption (2.20) on f.

The idea consists of spreading out the feasible region L in the following way

m 2 b < x i [ Ii i 1
n˜ x < M 1 b i [ IL 5 x [ R (4.1)_ i i 25 * 6m 2 b < x < M 1 b i [ Ii i i 3

where b is a positive constant, and considering the new function:

f( x ) x [ L_ _
n

f̃( x ) 5 (4.2)_ ˜5f( x ) 1 O g ( x ) x [ L\L_ _ _i
i51
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where
p(m 2 x )i i]]]]] m 2 b , x , m , i [ I ∨ Iq i i i 1 3(x 2 m 1 b )i i
pg ( x ) 5 (4.3)_ (x 2 M )i i i]]]]] M , x , M 1 b , i [ I ∨ Iq i i i 2 35 (M 2 x 1 b )i i

0 otherwise

with p, q [ R such that

2 , p , q 2 1 . (4.4)

˜ ˜In such a manner we have a function f defined on L that satisfies the assumptions of
˜ ˜Theorem 2.3, in particular f → 1` ; x [ L. In this case the diagonal matrix D( x )_ _

becomes D ( x ) 5 diag(d ( x ), d ( x ), . . . , d ( x )) with_ _ _ _b b b b1 2 n

x 2 m 1 b i [ Ii i 1

M 2 x 1 b i [ Ii i 2d ( x ) 5 (4.5)_bi (x 2 m 1 b )(M 2 x 1 b )i i i i5]]]]]]]] i [ I3M 2 m 1 2bi i

and the stochastic differential equation (1.4), (1.5) become

2 ¯d x (t) 5 (2D ( x )= f(x) 1 b ( x )) dt 1 «(t)D (x ) dW(t) (4.6)_ _ _ _ _b x b b_

0
˜x (0) [ L (4.7)_

0
n˜ ˜where L is the interior of L and b ( x ) [ R is the vector whose components are_ _b

g ( x )_i2 ]]b ( x ) 5 d ( x ) i 5 1, . . . , n . (4.8)_ _b bi i xi

˜˜When b → 0 we have L → L and f → f, so we propose to solve the problem (1.2)
following the path of the stochastic differential equation (4.6), (4.7) with the
piecewise constant function « given by (2.3) and with b → 0 as t → 1`.

We can see with an easy computation that (4.4) and (4.8) imply that ub ( x )u →_bi˜1` as x → L strong enough to push the trajectory back to the feasible region L as_
b → 0, both from the theoretical and from the computational point of view.

5. Numerical results

In this section we show some numerical results obtained applying the new
algorithms proposed in this paper on some test problems known in literature. In the
following, we refer to the algorithm described in Section 3 as A1-algorithm and to
the algorithm in Section 4 as A2-algorithm.

Every test problem consists of an objective function f, a feasible region L and an
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ninitial feasible point x [ R . The starting point x has been chosen in the_ _0 0

‘attracting set’ of a local minimizer.
The algorithm has been coded in Fortran 77 language and tested on a P.C.

Pentium 300 MHz in double precision arithmetic.
TEST 1. Sinusoidal test function:

min 2(2.5 sen x sen x 1 sen 5x sen 5x ) (5.1)1 2 1 2
x [L_

with
2

L 5 h x [ R u 0 < x < p , i 5 1, 2j (5.2)_ i

TThe starting point is x 5 (3.14, 3.14) and the global minimizers di f in L is_0
Tx * 5 (p /2, p /2) ._

Test problems 2–5 have the following objective function (Levy and Montalto
[6]):

n21
p 2 2 2 2]min 10 sin (px ) 1 O (x 2 1) [1 1 10 sin (px )] 1 (x 2 1) (5.3)H J1 i i11 nnx [L_ i51

where L is given by
n

L 5 h x [ R u 210 < x < 10 , i 5 1, 2, . . . , nj . (5.4)_ i

nThe objective function in (5.3) has about 10 local minima in L and only a global
T nminimizer at x * 5 (1, 1, . . . , 1) [ R ._

5TEST 2. Solving (5.3), (5.4) with n 5 5 and x 5 0 [ R ._ _0
8TEST 3. Solving (5.3), (5.4) with n 5 8 and x 5 0 [ R ._ _0

10TEST 4. Solving (5.3), (5.4) with n 5 10 and x 5 0 [ R ._ _0
15TEST 5. Solving (5.3), (5.4) with n 5 15 and x 5 0 [ R ._ _0

TEST 6. This test problem, proposed in [7], is given by

8 8 8 2
2 4 3min 2 O x O x 1 O x (5.5)S DS D S Di i i

x [L_ i51 i51 i51

with
8

L 5 h x [ R u 0 < x < 1 , i 5 1, 2, . . . , 8j (5.6)_ i

T 8and x 5 (1 /2, 1 /2, . . . , 1 /2) [ R , that is a Kuhn Tucker point. The global_0

minimizers of f on L are obtained setting four components equal to 0.5 and the
others equal to 1.

2TEST 7 (Six-hump Camel-back function [6]). Let x [ R , we have_
4x12 2 2 2S D]min 4 2 2.1x 1 x 1 x x 1 (4x 2 4)x (5.7)1 1 1 2 2 23x [L_

where L is given by
2

L 5 h x [ R u 23 < x < 3, 22 < x < 2j . (5.8)_ 1 2
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TThe starting point is x 5 (0, 0) where the gradient of f is equal to zero. The_0

function f has four local minimizers in L and two global minimizers x * 5_
T

6(20.089842, 0.71266) .
We note that the objective functions of the considered test problems do not satisfy

the assumption of Theorem 2.3, but numerical experience shows that also in this
case A1-algorithm works.

We studied the behavior of the two algorithms with respect to the input
parameters. In fact an unsuitable choice of such parameters effects the success of the
algorithms. To show the performance of the two algorithms we run the algorithms
choosing the parameters involved to be the ‘best’ input parameters for the test
problems considered. These ‘best’ parameters have been selected by several
numerical experiments and they are shown in Table 5.1. With these parameters we
find a global minimizer of the test problems considered almost at each running and,
at the same time, we take as low as possible the computational cost of the
algorithms.

In all the experiments for each value of the parameter « . « we followed aj min

given number, NT, of trajectories for 100 iterations, then we ordered the trajectories
according with the value that the objective function assumes on them and we
discarded the trajectory numbered NT/2. In all the experiments we chose « 5min

1 /E 2 2. In Table 5.1 we report the other input parameters of the algorithms used
for each test problem. For the A2-algorithm we had to choose three further
parameters: p, q and b (see Section 4). For all the problems we used the parameters
p 5 2.5 and q 5 4. In Table 5.1 we show the initial value of the parameter b that has
been reduced at the end of each period of observation in such a manner to keep
feasible each trajectory.

For each test problem we run A1 and A2 algorithms for 100 times. In Table 5.1
we show the number of successes of the two algorithms, that is how many times

Table 5.1. A1 and A2 algorithms

Test « r HMAX b NT Number of Successes Successes0 «

problems gradient of A1 of A2
evaluation algorithm algorithm

Test 1 100 0.7 1E-1 0.5 3 2600 99 100
Test 2 10 0.8 1E-4 1 4 3100 94 95
Test 3 100 0.8 1E-3 1 4 4200 98 98
Test 4 100 0.8 1E-3 1 6 4200 96 95
Test 5 100 0.8 1E-3 1 8 4200 92 90
Test 6 10 0.9 1E-1 0.5 10 6600 100 100
Test 7 1 0.7 1E-3 0.5 3 1300 100 100

« : starting value of «.0

r : reduction coefficient of «.«

HMAX: biggest value of the step-length h .k

NT: number of trajectories followed.
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they reached a global minimizer. Moreover in Table 5.1 we show the number of
gradient evaluations required for each trajectory before the last step of the algorithm
is called.

From Table 5.1 we can see that the A1 and A2 algorithms have substantially the
same behavior. This fact is trivial when the global minimizer is in the interior of the
feasible region (see Tests 1–5 and 7) but it is not obvious when the global
minimizer is on the boundary as in Test 6. In this case to obtain a good performance
of A1 algorithm we have to choose the step-length h (see (3.1)) in such a mannerk

that the trajectory can reach the boundary only for a suitable small value of «.
We note that the two algorithms require a large number of steps, so that, when the

problem has a large number of variables, it is convenient to implement it in parallel.
In the last part of this section we compare the behavior of A1-algorithm (on test

problems 1–7) with the method in [1, 2] (that we call A3-algorithm) and with the
Simulated Annealing Algorithm that is a well-known stochastic algorithm for global
optimization. For numerical implementation of the Simulated Annealing we refer to
the Web sites:

http: / /weber.u.washington.edu/ | savic /SA.HTM ,

http: / /www.bit.uq.edu.au /Francis / sim ann.html .–

In particular, at each iteration we generate a random direction whose component are
numbers uniformly distributed in [21, 1] and we generate a random point uniformly
along such direction. Then we update the new point with acceptance probability.

We made a numerical experience to establish the best input parameters of each
algorithm on each test problem. We use these parameters to compare the per-
formance of these algorithms. The parameters are shown in Tables 5.1, 5.2, 5.3.

With the parameters described, we run each algorithm for each test problem for
100 times with the following stop criterion:

k(u f( x ) 2 f( x *)u , precision) OR (number of iterations . BigM) (5.9)_ _

where x * is the known optimal points of the problem considered and BigM is a very_

Table 5.2. Parameters used for Simulated Annealing algorithm

Test « r NP Initial penality r0 « p

problems factor

Test 1 1E-5 0.9 100 100 1.1
Test 2 1 0.9 100 100 1.1
Test 3 1 0.95 100 100 1.1
Test 4 1 0.95 100 100 1.1
Test 5 1 0.98 100 100 1.1
Test 6 1 0.98 1000 1000 1.05
Test 7 1E-5 0.9 100 100 1.1

r : growth coefficient of penality factor.p

NP: number of iterations between two consecutive updating of « and penality factor.
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Table 5.3. Parameters used for A3 algorithm

Test « r NP Initial penality r NT h0 « p k

problems factor

Test 1 1 0.7 100 100 1.1 3 1E-3
Test 2 10 0.8 100 100 1.1 4 1E-3
Test 3 10 0.9 100 100 1.1 4 1E-3
Test 4 10 0.95 100 100 1.1 6 1E-3
Test 5 1 0.8 200 100 1.1 8 1E-2
Test 6 10 0.8 300 1000 1.05 10 1E-3
Test 7 1 0.7 100 100 1.1 3 1E-3

r : growth coefficient of penality factor.p

NP: number of iterations between two consecutive updating of « and penality factor.

large fixed constant. We chose precision 5 1E-5 for Test problems 1–5 and 7 and
precision 5 1E-2 for Test problem 6. The different level of precision required for
test problem 6 is due to the fact that this problem is not easy because the global and
the local minimiers are ‘nears’ and located on the boundary of the feasible region.
This fact makes poor the accuracy of the three algorithms, in particular the accuracy
of the Simulated Annealing algorithm.

We note that the stop criterion (5.9) is different from the criterion described in
Section 3, we use (5.9) since it is well suited to compare the performance of the
algorithms.

The first aim of this study is to compare the number of successes in percent, that
is how many times they reach a global minimizer on 100 running.

The second aim is to compare the average number of iterations required by the
algorithms to satisfy (5.9) when a global optimum is found. The comparison is made
keeping in mind that one iteration of the Simulated Annealing algorithm requires
just one evaluation of function instead one iteration of the other two algorithms
requires one evaluation of gradient for each trajectory considered.

The results of this comparison are shown in Table 5.4 where for each algorithm
considered we report the number of successes (%), the average number of iterations

Table 5.4. Comparison between the algorithms considered

Test A1-algorithm Simulated Annealing A3-algorithm
problems

% no. iter. NT % no. iter. % no. iter. NT

Test 1 99 2388 3 100 2753 100 2753 3
Test 2 95 3104 4 100 33437 88 2700 4
Test 3 98 4671 4 95 80775 97 6500 4
Test 4 96 4753 6 79 87053 70 7677 6
Test 5 92 4923 8 63 141212 65 14660 8
Test 6 100 5900 10 40 856655 95 6823 10
Test 7 100 931 3 100 1674 100 1515 3
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(no. iter.) required to satisfy (5.9) when a global optimum is found and the number
of trajectories followed for the A1 and A3 algorithms (NT).

We can see that in the case of Test problems 1–3 and 7 with low number of
variables the behavior of the Simulated Annealing algorithm is better than the
behavior of A1-algorithm. Instead, when the number of variables increases (Tests
4–6) and in particular when the value of the objective function f at the global
minimizer is ‘near’ to the value of f at a local minimizer (Test 6) the performance of
Simulated Annealing algorithm makes very poor.

We note that the behavior of A1 algorithm seems to be a little better than the
behavior of A3 algorithm, moreover A1-algorithm has the advantage that it does not

0
krequire penalization function and it guarantees (see Lemma 2.1) that x [ L,_

k 5 1, 2, . . . .
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